Advertisements
Advertisements
प्रश्न
Express the following as a single logarithm:
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
उत्तर
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
= `"log"(3^4)/(2^3) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(5^2)/(3^2)`
= log34 - log23 - 2log3 + 2log5 + 3log2 - 3log5 + log52 - log32
= 4log3 - 3log2 - 2log3 + 2log5 + 3log2 - 3log5 + 2log5 - 2log3
= log5.
APPEARS IN
संबंधित प्रश्न
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
Express the following in terms of log 2 and log 3: log 216
Express the following in terms of log 5 and/or log 2: log80
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103