Advertisements
Advertisements
प्रश्न
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
उत्तर
`(1)/(2)"log"25 - 2"log"3 + "log"36`
= `(1)/(2)"log"5^2 - 2"log"3 + "log"(2^2 xx 3^2)`
= `(1)/(2) xx 2"log"5 - 2"log"3 + "log"2^2 + "log3^2`
= log5 + 2log2
= log5 + log22
= log5 + log4
= log(5 x 4)
= log20.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log (a + 1) = log (4a - 3) - log 3; find a.
If 2 log y - log x - 3 = 0, express x in terms of y.
Prove that:
log10 125 = 3(1 - log102).
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`