Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18
उत्तर
log18
= log (2 x 32)
= log 2 + log 32
= log 2 + 2 log 3
= 0.3010 + (2 x 0.4771)
= 1.2552.
APPEARS IN
संबंधित प्रश्न
If 2 log y - log x - 3 = 0, express x in terms of y.
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Express the following in terms of log 5 and/or log 2: log20
Express the following in terms of log 5 and/or log 2: log80
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540