Advertisements
Advertisements
प्रश्न
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
उत्तर
`log_x 25 - log_x 5 = 2 - log_x (1/125)`
⇒ `log_x 5^2 - log_x 5 = 2 - log_x (1/5)^3`
⇒ `log_x 5^2 - log_x 5 = 2 - log_x 5^-3`
⇒ `2log_x 5 - log_x 5 = 2 + 3log_x 5`
⇒ `2log_x 5 - log_x 5 - 3log_x 5 = 2`
⇒ - 2logx5 = 2
⇒ logx5 = -1
⇒ x-1 = 5
⇒ `1/x` = 5
⇒ x = `1/5`.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
Express the following in terms of log 2 and log 3: log128
Express the following in terms of log 5 and/or log 2: log125
Express the following in terms of log 5 and/or log 2: log500
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log a = p and log b = q, express `"a"^3/"b"^2` in terms of p and q.
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
Simplify: log a2 + log a-1
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`