Advertisements
Advertisements
प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
उत्तर
`3/2 log a + 2/3` log b - 1 = 0
⇒ `log a^(3/2) + log b^(2/3)` = 1
⇒ log`( a^(3/2) xx b^(2/3)) = 1`
⇒ log`( a^(3/2) xx b^(2/3)) = log 10`
⇒ `( a^(3/2) xx b^(2/3))` = 10
⇒ `( a^(3/2) xx b^(2/3))^6 = 10^6`
⇒ a9 . b4 = 106
APPEARS IN
संबंधित प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Solve the following:
log(x2 + 36) - 2log x = 1
Solve for x: `("log"27)/("log"243)` = x
Express log103 + 1 in terms of log10x.
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`