Advertisements
Advertisements
प्रश्न
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
उत्तर
`2"log" x + 1/2"log" y` = 1
⇒ `"log" x^2 + "log sqrt(y)` = log 10
⇒ `"log"(x^2sqrt(y))` = log 10
⇒ `x^2 sqrt(y)` = 10.
APPEARS IN
संबंधित प्रश्न
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"289)/("log"17)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If log (a + 1) = log (4a - 3) - log 3; find a.
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.