Advertisements
Advertisements
प्रश्न
Solve for x: `("log"289)/("log"17)` = logx
उत्तर
`("log"289)/("log"17)` = logx
⇒ `("log"17^2)/("log"17)` = logx
⇒ `(2"log"17)/("log"17)` = logx
⇒ 2 = logx
⇒ 2log10 = logx ...(since log10 = 1)
⇒ log102 = logx
∴ x = 102
= 100.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
Prove that log 10 125 = 3 (1 - log 10 2)
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1