Advertisements
Advertisements
Question
Solve for x: `("log"289)/("log"17)` = logx
Solution
`("log"289)/("log"17)` = logx
⇒ `("log"17^2)/("log"17)` = logx
⇒ `(2"log"17)/("log"17)` = logx
⇒ 2 = logx
⇒ 2log10 = logx ...(since log10 = 1)
⇒ log102 = logx
∴ x = 102
= 100.
APPEARS IN
RELATED QUESTIONS
If log√27x = 2 `(2)/(3)` , find x.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Evaluate: logb a × logc b × loga c.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"121)/("log"11)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that log 10 125 = 3 (1 - log 10 2)