Advertisements
Advertisements
Question
Solve for x: `("log"1331)/("log"11)` = logx
Solution
`("log"1331)/("log"11)` = logx
⇒ `("log"11^3)/("log"11)` = logx
⇒ `(3"log"11)/(log"11)` = logx
⇒ 3 = logx
⇒ 3log10 = logx ...(since log10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
RELATED QUESTIONS
Find x, if : logx (5x - 6) = 2
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"289)/("log"17)` = logx
Express log103 + 1 in terms of log10x.
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.