English

Prove That: 1 Log 8 36 + 1 Log 9 36 + 1 Log 18 36 = 2 - Mathematics

Advertisements
Advertisements

Question

Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2

Sum

Solution

L.H.S.
= `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` 

= log36 8 + log36 9 + log36 18

= `("log"8)/("log"36) + ("log"9)/("log"36) + ("log"18)/("log"36)`

= `(1)/("log"36)("log" 8 + "log"9 + "log"18)`

= `(1)/("log"36)("log"2^3 + "log"3^2 + "log"(2 xx 3^2))`

= `(1)/("log"(2^2 xx 3^2))("log"2^3 + "log"3^2 + "log"2 + "log"3^2)`

= `(1)/("log"(2^2 xx 3^2))(3"log"2 + 2"log"3 + "log"2 + "log"3)`

= `(1)/(2"log"2 + 2"log"3)(4"log"2 + 4"log"3)`

= `(4)/(2("log"2 + "log"3))("log"2 + "log"3)`
= 2
= R.H.S.
Hence proved.

shaalaa.com
More About Logarithm
  Is there an error in this question or solution?
Chapter 10: Logarithms - Exercise 10.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 10 Logarithms
Exercise 10.2 | Q 41.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×