Advertisements
Advertisements
Question
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
Solution
L.H.S.
= `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)`
= log36 8 + log36 9 + log36 18
= `("log"8)/("log"36) + ("log"9)/("log"36) + ("log"18)/("log"36)`
= `(1)/("log"36)("log" 8 + "log"9 + "log"18)`
= `(1)/("log"36)("log"2^3 + "log"3^2 + "log"(2 xx 3^2))`
= `(1)/("log"(2^2 xx 3^2))("log"2^3 + "log"3^2 + "log"2 + "log"3^2)`
= `(1)/("log"(2^2 xx 3^2))(3"log"2 + 2"log"3 + "log"2 + "log"3)`
= `(1)/(2"log"2 + 2"log"3)(4"log"2 + 4"log"3)`
= `(4)/(2("log"2 + "log"3))("log"2 + "log"3)`
= 2
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find x, if : logx (5x - 6) = 2
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Evaluate: logb a × logc b × loga c.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log(x2 + 36) - 2log x = 1
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.