Advertisements
Advertisements
Question
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solution
`log x/ log y = 3/2`
⇒ 2log x = 3log y
⇒ log y = `(2log x)/3` ...(1)
log( xy ) = 5
⇒ log x + log y = 5
⇒ log x + `(2log x)/3` = 5 ....[ Substituting (1) ]
⇒ `[ 3log x + 2log x ]/3 = 5`
⇒ `(5logx)/3 = 5`
⇒ log x = 3
⇒ x = 103
∴ x = 1000
Substituting x = 1000
log y = `[ 2 xx 3 ]/3`
⇒ log y = 2
⇒ y = 102
∴ y = 100.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Evaluate: logb a × logc b × loga c.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
If log x = a and log y = b, write down
10a-1 in terms of x
If log x = a and log y = b, write down
102b in terms of y
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.