Advertisements
Advertisements
प्रश्न
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
उत्तर
`log x/ log y = 3/2`
⇒ 2log x = 3log y
⇒ log y = `(2log x)/3` ...(1)
log( xy ) = 5
⇒ log x + log y = 5
⇒ log x + `(2log x)/3` = 5 ....[ Substituting (1) ]
⇒ `[ 3log x + 2log x ]/3 = 5`
⇒ `(5logx)/3 = 5`
⇒ log x = 3
⇒ x = 103
∴ x = 1000
Substituting x = 1000
log y = `[ 2 xx 3 ]/3`
⇒ log y = 2
⇒ y = 102
∴ y = 100.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Evaluate: logb a × logc b × loga c.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"128)/("log"32)` = x
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1