Advertisements
Advertisements
प्रश्न
Solve for x: `("log"121)/("log"11)` = logx
उत्तर
`("log"121)/("log"11)` = logx
⇒ `("log"11^2)/("lo"11)` = logx
⇒ `(2"log"11)/("log"11)` = logx
= 2 = logx
⇒ 2log 10 = logx ...(since log 10 = 1)
⇒ log 102 = logx
∴ x = 102
= 100.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If log√27x = 2 `(2)/(3)` , find x.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solve for x: `("log"125)/("log"5)` = logx
Express log103 + 1 in terms of log10x.
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.