Advertisements
Advertisements
प्रश्न
Solve for x: `("log"125)/("log"5)` = logx
उत्तर
`("log"125)/("log"5)` = logx
⇒ `("log"5^3)/("log"5)` = logx
⇒ `(3"log"5)/("log"5)` = logx
⇒ 3 = logx
⇒ 3log10 = log x ...(since log 10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If log√27x = 2 `(2)/(3)` , find x.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Show that : loga m ÷ logab m + 1 + log ab
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve for x: log (x + 5) = 1
Solve for x: `("log"121)/("log"11)` = logx
If 2 log x + 1 = log 360, find: log(2 x -2)
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.