Advertisements
Advertisements
Question
Solve for x: `("log"125)/("log"5)` = logx
Solution
`("log"125)/("log"5)` = logx
⇒ `("log"5^3)/("log"5)` = logx
⇒ `(3"log"5)/("log"5)` = logx
⇒ 3 = logx
⇒ 3log10 = log x ...(since log 10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
RELATED QUESTIONS
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
If log√27x = 2 `(2)/(3)` , find x.
Find x, if : logx 625 = - 4
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n