Advertisements
Advertisements
Question
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Solution
log`(( a - b )/2)= 1/2( log a + log b )`
⇒ log`(( a - b )/2) = 1/2( log ab ) `
⇒ log`(( a - b )/2) = log (ab)^(1/2)`
⇒ `(( a - b )/2) = (ab)^(1/2)`
Squaring both sides we have,
`(( a - b)/2)^2 = ab`
⇒ `( a - b )^2/4 = ab`
⇒ ( a - b )2 = 4ab
⇒ a2 + b2 - 2ab = 4ab
⇒ a2 + b2 = 4ab + 2ab
⇒ a2 + b2 = 6ab.
APPEARS IN
RELATED QUESTIONS
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"121)/("log"11)` = logx
Express log103 + 1 in terms of log10x.
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q