Advertisements
Advertisements
प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
उत्तर
log`(( a - b )/2)= 1/2( log a + log b )`
⇒ log`(( a - b )/2) = 1/2( log ab ) `
⇒ log`(( a - b )/2) = log (ab)^(1/2)`
⇒ `(( a - b )/2) = (ab)^(1/2)`
Squaring both sides we have,
`(( a - b)/2)^2 = ab`
⇒ `( a - b )^2/4 = ab`
⇒ ( a - b )2 = 4ab
⇒ a2 + b2 - 2ab = 4ab
⇒ a2 + b2 = 4ab + 2ab
⇒ a2 + b2 = 6ab.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate: logb a × logc b × loga c.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: log (x + 5) = 1
Solve for x: `("log"27)/("log"243)` = x