Advertisements
Advertisements
प्रश्न
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
उत्तर
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
⇒ log [(x + 1)(x - 1)] = log 11 + log 32
⇒ log {x2 - 1} = log (11.9)
⇒ log {x2 - 1} = log99
⇒ x2 - 1 = 99
⇒ x2 = 100
So, x = 10 or -10
Negative value is rejected
So, x = 10.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: log (x + 5) = 1
Solve for x: `("log"125)/("log"5)` = logx
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If 2 log x + 1 = log 360, find: x