Advertisements
Advertisements
प्रश्न
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
उत्तर
`3^(1-2y+3x)` in terms of m an n
log 3 m = x
⇒ m = 3x
log 3 n = y
⇒ n = 3y
∴ `3^(1-2y+3x)`
= 3.3-2y.33x
= 3.(3y)-2.(3x)3
= 3n-2.m3
= `(3"m"^3)/"n"^2`.
APPEARS IN
संबंधित प्रश्न
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"1331)/("log"11)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x