Advertisements
Advertisements
Question
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
Solution
`3^(1-2y+3x)` in terms of m an n
log 3 m = x
⇒ m = 3x
log 3 n = y
⇒ n = 3y
∴ `3^(1-2y+3x)`
= 3.3-2y.33x
= 3.(3y)-2.(3x)3
= 3n-2.m3
= `(3"m"^3)/"n"^2`.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate: logb a × logc b × loga c.
Solve the following:
log 4 x + log 4 (x-6) = 2
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that log 10 125 = 3 (1 - log 10 2)