Advertisements
Advertisements
Question
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Solution
`"log" x^2 - "log"sqrt(y)` = 1
⇒ `"log"(x^2/sqrt(y))` = log 10
⇒ `x^2/sqrt(y)` = 10
⇒ `sqrt(y) = x^2/(10)`
Squaring both sides, we get
y = `(x^2/10)^2 = x^4/(100)`
Now, when x = 2,
y = `(2^4)/(100) = (16)/(100) = (4)/(25)`.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"128)/("log"32)` = x
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.