Advertisements
Advertisements
Question
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Solution
Given that
x = log 0.6 , y = log 1.25, z = log 3 - 2log 2
Consider
z = log 3 - 2log 2
= log 3 - log 22
= log 3 - log 4
= log`3/4`
= log 0.75 ....(1)
(i) x + y - z = log 0.6 + log 1.25 - log 0.75
= log`[ 0.6 xx 1.25 ]/0.75`
= log`[0.75/0.75]`
= log 1
= 0 ...(2)
(ii) 5x + y - z = 50 ...[ ∵ x + y - z = 0 from (2) ]
= 1
APPEARS IN
RELATED QUESTIONS
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Find x, if : logx 625 = - 4
Show that : loga m ÷ logab m + 1 + log ab
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.