Advertisements
Advertisements
Question
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solution
Given that
a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z
Consider the equation,
3a2 - 2b3 = 6log z
⇒ 3log x - 2log y = 6log z
⇒ logx3 - logy2 = logz6
⇒ log `(x^3/y^2)` = logz6
⇒ `x^3/y^2 = z^6`
⇒ `x^3/z^6 = y^2`
⇒ `y^2 = x^3/z^6`
⇒ y = `( x^3/z^6 )^(1/2)`
⇒ y = `( x^(3/2)/z^(6/2))`
⇒ y = `x^(3/2)/z^3`
APPEARS IN
RELATED QUESTIONS
If log√27x = 2 `(2)/(3)` , find x.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"81)/("log"9)` = x
If log x = a and log y = b, write down
10a-1 in terms of x
If log x = a and log y = b, write down
102b in terms of y
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`