Advertisements
Advertisements
Question
If log√27x = 2 `(2)/(3)` , find x.
Solution
log√27x = 2 `(2)/ (3)`
∴ log√27x = `(8)/ (3)`
∴ x = `( sqrt27 )^((8)/ (3))` ...[ ∵ loga x = b ⇒ x = ab ]
∴ x = `( 27^((1)/(2)))^(8/3)`
∴ x = `( 3 ^((3)/(2)))^(8/3)`
∴ x = `3^((3/2)xx(8/3))`
∴ x = 34
∴ x = 81
APPEARS IN
RELATED QUESTIONS
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Evaluate: logb a × logc b × loga c.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"1331)/("log"11)` = logx
If log x = a and log y = b, write down
10a-1 in terms of x
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Express the following in a form free from logarithm:
3 log x - 2 log y = 2