Advertisements
Advertisements
प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
उत्तर
log√27x = 2 `(2)/ (3)`
∴ log√27x = `(8)/ (3)`
∴ x = `( sqrt27 )^((8)/ (3))` ...[ ∵ loga x = b ⇒ x = ab ]
∴ x = `( 27^((1)/(2)))^(8/3)`
∴ x = `( 3 ^((3)/(2)))^(8/3)`
∴ x = `3^((3/2)xx(8/3))`
∴ x = 34
∴ x = 81
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
Find x, if : logx (5x - 6) = 2
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Evaluate: logb a × logc b × loga c.
Solve the following:
log(x2 + 36) - 2log x = 1
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`