Advertisements
Advertisements
प्रश्न
Find x, if : logx 625 = - 4
उत्तर
logx 625 = - 4
⇒ 625 = x- 4 ...[ Removing logarithm ]
⇒ 54 = `( 1/x )^4`
⇒ 5 = `1/x` ....[ Powers are same, bases are equal ]
⇒ x = `1/5`
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Find x, if : logx (5x - 6) = 2
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log (3 - x) - log (x - 3) = 1
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x