Advertisements
Advertisements
प्रश्न
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
उत्तर
Given that
m = log 20 and n = log 25
We also have
2log( x - 4 ) = 2m - n
⇒ 2log ( x - 4 ) = 2log 20 - log 25
⇒ log( x - 4 )2 = log202 - log 25
⇒ log( x - 4 )2 = log 400 - log 25
⇒ log( x - 4 )2 = log `400/25`
⇒ ( x - 4 )2 = `400/25`
⇒ ( x - 4 )2 = 16
⇒ x - 4 = 4
⇒ x = 4 + 4
⇒ x = 8.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Evaluate: logb a × logc b × loga c.
Evaluate : log38 ÷ log916
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve for x: `("log"128)/("log"32)` = x
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.