Advertisements
Advertisements
प्रश्न
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
उत्तर
logx15√5 = 2 - logx3√5
⇒ logx15√5 + logx3√5 = 2
⇒ logx( 15√5 x 3√5 ) = 2
⇒ logx 225 = 2
⇒ logx 152 = 2
⇒ 2logx 15 = 2
⇒ logx15 = 1
⇒ x = 15.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If log√27x = 2 `(2)/(3)` , find x.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate : log38 ÷ log916
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"81)/("log"9)` = x
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1