Advertisements
Advertisements
प्रश्न
Evaluate: logb a × logc b × loga c.
उत्तर
logb a x logc b x loga c
⇒ ` ( log_10a)/ ( log _10b) ` x ` ( log_10b)/ ( log _10c ) ` x ` ( log_10c)/ ( log _10a) `
⇒ 1.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"289)/("log"17)` = logx
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.