Advertisements
Advertisements
प्रश्न
Solve for x: `("log"289)/("log"17)` = logx
उत्तर
`("log"289)/("log"17)` = logx
⇒ `("log"17^2)/("log"17)` = logx
⇒ `(2"log"17)/("log"17)` = logx
⇒ 2 = logx
⇒ 2log10 = logx ...(since log10 = 1)
⇒ log102 = logx
∴ x = 102
= 100.
APPEARS IN
संबंधित प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"128)/("log"32)` = x
State, true of false:
logba =-logab
If 2 log x + 1 = log 360, find: log(2 x -2)
If log (a + 1) = log (4a - 3) - log 3; find a.