Advertisements
Advertisements
प्रश्न
If log (a + 1) = log (4a - 3) - log 3; find a.
उत्तर
log (a + 1) = log (4a - 3) - log 3
⇒ log (a + 1) + log 3 = log (4a - 3)
⇒ log {3(a + 1)} = log (4a - 3)
⇒ 3 (a + 1) = 4a - 3
⇒ 3a + 3 = 4a - 3
⇒ 4a - 3a = 3 + 3
⇒ a = 6.
APPEARS IN
संबंधित प्रश्न
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log (x + 1) + log (x - 1) = log 48
Express log103 + 1 in terms of log10x.
State, true of false:
logba =-logab
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.