Advertisements
Advertisements
प्रश्न
If log (a + 1) = log (4a - 3) - log 3; find a.
उत्तर
log (a + 1) = log (4a - 3) - log 3
⇒ log (a + 1) + log 3 = log (4a - 3)
⇒ log {3(a + 1)} = log (4a - 3)
⇒ 3 (a + 1) = 4a - 3
⇒ 3a + 3 = 4a - 3
⇒ 4a - 3a = 3 + 3
⇒ a = 6.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"289)/("log"17)` = logx
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that log 10 125 = 3 (1 - log 10 2)