Advertisements
Advertisements
Question
If log (a + 1) = log (4a - 3) - log 3; find a.
Solution
log (a + 1) = log (4a - 3) - log 3
⇒ log (a + 1) + log 3 = log (4a - 3)
⇒ log {3(a + 1)} = log (4a - 3)
⇒ 3 (a + 1) = 4a - 3
⇒ 3a + 3 = 4a - 3
⇒ 4a - 3a = 3 + 3
⇒ a = 6.
APPEARS IN
RELATED QUESTIONS
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 4 x + log 4 (x-6) = 2
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1