English

Given X = Log1012 , Y = Log4 2 X Log109 and Z = Log100.4 , Find : (I) X - Y - Z (Ii) 13x - Y - Z - Mathematics

Advertisements
Advertisements

Question

Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z

Sum

Solution

(i) x - y - z

= log1012 - log42 x log109 - log100.4

= log10( 4 x 3 ) - log42 x log109 - log100.4

= log104 + log103 - log42 x 2log103 - log10`( 4/10 )`

= log104 + log103 - `(log_10 2)/(2log_10 2)` x 2log103 - log104 + log1010
= log104 + log103 - `[ 2log_10 3 ]/2`- log104 + 1
= 1

(ii) 13x - y - z = 131 = 13.

shaalaa.com
More About Logarithm
  Is there an error in this question or solution?
Chapter 8: Logarithms - Exercise 8 (D) [Page 111]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 8 Logarithms
Exercise 8 (D) | Q 17 | Page 111
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×