Advertisements
Advertisements
Question
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solution
(i) x - y - z
= log1012 - log42 x log109 - log100.4
= log10( 4 x 3 ) - log42 x log109 - log100.4
= log104 + log103 - log42 x 2log103 - log10`( 4/10 )`
= log104 + log103 - `(log_10 2)/(2log_10 2)` x 2log103 - log104 + log1010
= log104 + log103 - `[ 2log_10 3 ]/2`- log104 + 1
= 1
(ii) 13x - y - z = 131 = 13.
APPEARS IN
RELATED QUESTIONS
If log√27x = 2 `(2)/(3)` , find x.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
If log x = a and log y = b, write down
102b in terms of y
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1