Advertisements
Advertisements
Question
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Solution
`("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Considering the first equality
`("log"x)/("log"5) = ("log"36)/("log"6)`
⇒ `("log"x)/("log"5) = ("log"6^2)/("log"6) = (2"log"6)/("log6)` = 2
⇒ log x = 2log5 = log 52 = log25
∴ x = 25
Considering the second equality
`("log"36)/("log"6) = ("log"64)/("log"y)`
⇒ `("log"6^2)/("log"6) = (2"log"6)/("log"6) = 2 = ("log"8)/("log"y)`
⇒ log y = `("log"64)/(2) = ("log"8^2)/(2) = (2"log"8)/(2)` = log8
∴ y = 8.
APPEARS IN
RELATED QUESTIONS
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If log√27x = 2 `(2)/(3)` , find x.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: log (x + 5) = 1
If log x = a and log y = b, write down
10a-1 in terms of x
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n