Advertisements
Advertisements
Question
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
Solution
`3/2 log a + 2/3` log b - 1 = 0
⇒ `log a^(3/2) + log b^(2/3)` = 1
⇒ log`( a^(3/2) xx b^(2/3)) = 1`
⇒ log`( a^(3/2) xx b^(2/3)) = log 10`
⇒ `( a^(3/2) xx b^(2/3))` = 10
⇒ `( a^(3/2) xx b^(2/3))^6 = 10^6`
⇒ a9 . b4 = 106
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Evaluate : log38 ÷ log916
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.