Advertisements
Advertisements
Question
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
Options
True
False
Solution
True.
`("log"49)/("log"7)` = log y
⇒ `("log"7^2)/("log"7)` = log y
⇒ `(2"log"7)/("log"7)` = log y
⇒ 2(1) = log y
⇒ 2log10 10 = log y
⇒ log10 102 = log10 y
⇒ log10 100 = log10 y
⇒ y = 100.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If log√27x = 2 `(2)/(3)` , find x.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"1331)/("log"11)` = logx
State, true of false:
logba =-logab