Advertisements
Advertisements
Question
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solution
`( log _5 8 )/(( log_25 16 ) xx ( log_100 10))`
⇒ ` (( log _10 8 )/ (( log_10 5)))/(( log_10 16 ) / ( log _10 25) xx ( log_10 10 ) / ( log _10 100))`
⇒ ` (( log _10 2^3 )/ (( log_10 5)))/(( log_10 2^4 ) / ( log _10 5^2) xx ( log_10 10 ) / ( log _10 10^2))`
⇒ `( log_10 2^3 ) / ( log _10 5) xx ( log_10 5^2 ) / ( log _10 2^4) xx ( log_10 10 ^ 2 ) / ( log _10 10 )`
⇒ `( 3log_10 2 ) / ( log _10 5) xx ( 2log_10 5 ) / ( 4log _10 2) xx ( 2log_10 10 ) / ( log _10 10 )`
⇒ 3
APPEARS IN
RELATED QUESTIONS
Find x, if : logx 625 = - 4
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"289)/("log"17)` = logx
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1