Advertisements
Advertisements
Question
Solve the following:
log 4 x + log 4 (x-6) = 2
Solution
log 4 x + log 4 (x-6) = 2
⇒ log 4 {x(x-6)} = 2 log 4 4
⇒ log 4 {x2 - 6x} = log 4 42
⇒ x2 - 6x = 16
⇒ x2 - 6x - 16 = 0
⇒ x2 - 8x + 2x - 16 = 0
⇒ x (x - 8) + 2 ( x - 8) = 0
⇒ (x - 8)(x + 2) = 0
⇒ x = 8 or -2
Negative value is rejected
So, x = 8.
APPEARS IN
RELATED QUESTIONS
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that log 10 125 = 3 (1 - log 10 2)
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1