Advertisements
Advertisements
Question
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solution
log 8 (x2 - 1) - log 8 (3x + 9) = 0
⇒ `"log"_8((x^2 - 1)/(3x + 9))` = log 8 1
⇒ `(x^2 - 1)/(3x + 9)` = 1
⇒ x2 - 1 = 3x + 9
⇒ x2 - 3x - 10 = 0
⇒ x2 - 5x + 2x - 10 = 0
⇒ x (x - 5) + 2(x - 5) = 0
⇒ (x - 5)(x + 2) = 0
⇒ x = 5 or x = -2.
APPEARS IN
RELATED QUESTIONS
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Evaluate: logb a × logc b × loga c.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
logba =-logab
If 2 log x + 1 = log 360, find: x
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that log 10 125 = 3 (1 - log 10 2)
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.