Advertisements
Advertisements
Question
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.
Solution
`"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`
Consider,
a + b + c
= `"log""p"^2/"qr"+ "log""q"^2/"rp"+ "log""r"^2/"pq"`
= logp2 - log qr + log q2 - logrp + logr2 - logpq
= 2logp - (logq + logr) + 2logq - (logr + logp) + 2logr - (logp + logq)
= 2logp - logq - logr + 2logq - logr - logp + 2logr - logp - logq
= 0.
APPEARS IN
RELATED QUESTIONS
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"289)/("log"17)` = logx
Express log103 + 1 in terms of log10x.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
Prove that log 10 125 = 3 (1 - log 10 2)