Advertisements
Advertisements
Question
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solution
logx49 - logx7 + logx `1/343` = - 2
⇒ logx`49/[7 xx 343]` = - 2
⇒ logx`1/49` = - 2
⇒ - logx 49 = - 2
⇒ logx49 = 2
⇒ 49 = x2 ...[Removing logarithm]
∴ x = 7.
APPEARS IN
RELATED QUESTIONS
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Show that : loga m ÷ logab m + 1 + log ab
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"1331)/("log"11)` = logx
If log x = a and log y = b, write down
102b in terms of y
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1