Advertisements
Advertisements
प्रश्न
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
उत्तर
logx49 - logx7 + logx `1/343` = - 2
⇒ logx`49/[7 xx 343]` = - 2
⇒ logx`1/49` = - 2
⇒ - logx 49 = - 2
⇒ logx49 = 2
⇒ 49 = x2 ...[Removing logarithm]
∴ x = 7.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Evaluate : log38 ÷ log916
Solve for x: `("log"121)/("log"11)` = logx
Express log103 + 1 in terms of log10x.
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
3 log x - 2 log y = 2