Advertisements
Advertisements
प्रश्न
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
उत्तर
log5( x + 1 ) - 1 = 1 + log5( x - 1 )
⇒ log5( x + 1 ) - log5( x - 1 ) = 2
⇒ `log_5 ( x + 1 )/( x - 1 ) = 2`
⇒ `( x + 1 )/( x - 1 ) = 5^2`
⇒ `( x + 1 )/( x - 1 ) = 25`
⇒ x + 1 = 25( x - 1 )
⇒ x + 1 = 25x - 25
⇒ 25x - x = 25 + 1
⇒ 24x = 26
⇒ x = `26/24 = 13/12`.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solve for x: `("log"1331)/("log"11)` = logx
State, true of false:
logba =-logab
If log x = a and log y = b, write down
102b in terms of y
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2