Advertisements
Advertisements
प्रश्न
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
उत्तर
log5( x + 1 ) - 1 = 1 + log5( x - 1 )
⇒ log5( x + 1 ) - log5( x - 1 ) = 2
⇒ `log_5 ( x + 1 )/( x - 1 ) = 2`
⇒ `( x + 1 )/( x - 1 ) = 5^2`
⇒ `( x + 1 )/( x - 1 ) = 25`
⇒ x + 1 = 25( x - 1 )
⇒ x + 1 = 25x - 25
⇒ 25x - x = 25 + 1
⇒ 24x = 26
⇒ x = `26/24 = 13/12`.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"125)/("log"5)` = logx
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.