Advertisements
Advertisements
प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
उत्तर
Given that
x = 1 + log 2 - log 5,
y = 2 log 3 and
z = log a - log 5
Consider
x = 1 + log 2 - log 5
= log 10 + log 2 - log 5
= log( 10 x 2 ) - log 5
= log 20 - log 5
= log `20/5`
= log 4 ....(1)
We have
y = 2 log3
= log 32
= log 9 ....(2)
Also we have
z = log a - log 5
= log`a/5` ....(3)
Given that x + y = 2z
∴ Subsitute the values of x, y, and z.
from (1), (2) and (3), We have
⇒ log 4 + log 9 = 2 log `a/5`
⇒ log 4 + log 9 = log`(a/5)^2`
⇒ log 4 + log 9 = log`(a^2/25)`
⇒ `log( 4 xx log 9 ) = log(a^2/25)`
⇒ `log 36 = log(a^2/25)`
⇒ `a^2/25 = 36`
⇒ a2 = 36 x 25
⇒ a2 = 900
⇒ a = 30.
APPEARS IN
संबंधित प्रश्न
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Evaluate : log38 ÷ log916
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"125)/("log"5)` = logx
If log x = a and log y = b, write down
10a-1 in terms of x
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
If log (a + 1) = log (4a - 3) - log 3; find a.