Advertisements
Advertisements
Question
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Solution
Given that
x = 1 + log 2 - log 5,
y = 2 log 3 and
z = log a - log 5
Consider
x = 1 + log 2 - log 5
= log 10 + log 2 - log 5
= log( 10 x 2 ) - log 5
= log 20 - log 5
= log `20/5`
= log 4 ....(1)
We have
y = 2 log3
= log 32
= log 9 ....(2)
Also we have
z = log a - log 5
= log`a/5` ....(3)
Given that x + y = 2z
∴ Subsitute the values of x, y, and z.
from (1), (2) and (3), We have
⇒ log 4 + log 9 = 2 log `a/5`
⇒ log 4 + log 9 = log`(a/5)^2`
⇒ log 4 + log 9 = log`(a^2/25)`
⇒ `log( 4 xx log 9 ) = log(a^2/25)`
⇒ `log 36 = log(a^2/25)`
⇒ `a^2/25 = 36`
⇒ a2 = 36 x 25
⇒ a2 = 900
⇒ a = 30.
APPEARS IN
RELATED QUESTIONS
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If log√27x = 2 `(2)/(3)` , find x.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
State, true of false:
logba =-logab
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log x = a and log y = b, write down
102b in terms of y
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1