Advertisements
Advertisements
Question
Solve the following:
log (3 - x) - log (x - 3) = 1
Solution
log (3 - x) - log (x - 3) = 1
⇒ `"log"((3 - x)/(x - 3))`
= 1
= log 10
⇒ `((3 - x)/(x - 3))` = 10
⇒ 3 - x = 10(x - 3)
⇒ 3 - x = 10x - 30
⇒ 11x = 33
⇒ x = 3.
APPEARS IN
RELATED QUESTIONS
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Evaluate: logb a × logc b × loga c.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"1331)/("log"11)` = logx
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1