Advertisements
Advertisements
Question
Solve the following:
log(x2 + 36) - 2log x = 1
Solution
log(x2 + 36) - 2log x = 1
⇒ log (x2 + 36) - log x2 = 1
⇒ `"log"((x^2 + 36)/x^2)` = 1
= log 10
⇒ `((x^2 + 36)/x^2)` = 10
⇒ x2 + 36 = 10x2
⇒ 9x2 = 36
⇒ x2 = 4
⇒ x = 2.
APPEARS IN
RELATED QUESTIONS
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve for x: `("log"128)/("log"32)` = x
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n