Advertisements
Advertisements
प्रश्न
Solve the following:
log(x2 + 36) - 2log x = 1
उत्तर
log(x2 + 36) - 2log x = 1
⇒ log (x2 + 36) - log x2 = 1
⇒ `"log"((x^2 + 36)/x^2)` = 1
= log 10
⇒ `((x^2 + 36)/x^2)` = 10
⇒ x2 + 36 = 10x2
⇒ 9x2 = 36
⇒ x2 = 4
⇒ x = 2.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Show that : loga m ÷ logab m + 1 + log ab
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"289)/("log"17)` = logx
State, true of false:
logba =-logab
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1